
N8 8 - 1 7 2 3 3 -

A Formal Approach to Validation and
Verification for Knowledge-Based Control .

Systems

Glen Castore
Honeywell Inc.

Systems and Research Center
Minneapolis, MN.

Abstract

As control systems become more com-
plex. in response to desires for greater
system flexibility, performance. and re-
liability the promise is held out that
artificial intelligence might provide the
means for building such systems. An
obstacle to the use of symbolic pro-
cessing constructs in this domain is
the need for verification and valida-
tion of the system. Techniques cur-
rently in use do not seem appropri-
ate for knowledge-based software. An
outline of a formal approach to V&V
for knowledge-based control systems is
presented in this paper.

1 Introduction

Knowledge-based systems have been
appIied in areas as diverse as medi-
cal diagposis. machine tool program-
ming. and VLSI design. Such appli-
cations have the common characteris-
tic that the recommendations of the
expert systen, can be dealt with in a
fairly relaxed manner. A doctor re-
views the diagnosis made by an expert
system to see if it is sensible. If there
is some question about it. the diagno-
sis can be ignored or the system can be
queried as to the basis for the analysis.
Time pressure is not severe and control

of the situation, in particular control of
the use of the output of the expert sys-
tem. remains in human hands. With
many of these systems problems with
the implementation or design can be
detected while the software is in use,
be fixed, and the expert system is still
be considered sufficiently reliable to be
useful.

This casual mode of operation is un-
acceptable when the knowledge-based
system is operating as part of au-
tonomous or semi-autonomous units
such as machine tool controllers, robots,
the space station life support module,
or an aircraft flight control system. In
such applications it becomes essential
to have a precise language for speci-
fying what the knowledge-based sys-
tem should do, and to have an effective
procedure for insuring that a partic-
ular implementation does meet these
requirements. This is the goal of val-
idation and verificatior (V%V) proce-
dures.

While there are no standard defi-
nitions for verification or validation
there is a general understanding that
verification addresses the issue of whether
the program specification accurately
reflects the functions to be performed
while validatron addresses the ques-
tion of whether the specifications are
correctly implemented. The ideas are

197

summarized in the phrases:

“Is the correct program being built?’
- (verification)

“Is the program built correctly?’ -
(validation)

Verification is often largely a man-
ual process. Specifications are read,
cross-referenced. and checked for con-
sistency and completeness. The qual-
ity of this work is heavily dependent on
the environment available for develop-
ing and tracking specifications and re-
quirements. Validation, on the other
hand. has traditionally involved a large
amount of testing. simulation and, to a
much lesser extent: methods based in
formal logic for establishing properties
of a program.

For most knowledge-based systems,
however. validation through testing
and simulation is inappropriate. There
are two dominant reasons for this.
First. knowledge-based systems are
usually most appropriately modeled as
nondeterministic automata. A charac-
teristic of nondeterministic machines is
that identical inputs to the machine
(in identical states) do not necessar-
ily yield identical outputs. The ba-
sis for verification by simulation crum-
bles. Secondly. expert systems, a sub-
class of knowledge-based systems, are
not always expected to give the right
answer: just as experts do not always
give the right answer. Thus the no-
tion of program correctness cannot al-
ways be formulated in terms of input-
output behavior. which is the assump
tion behind testing and simulation as
well as some formal methods. While
neither of these properties is unique
to knowledge-based software, they are
much more prominant than in, for
example, operating system software.
Moreover. these are not characteris-
tics often found in software which must
meet rigorous V&V criteria. Control
logic for aircraft control systems, for
example, is often designed explicitly in
terms of finite state machines. Thus it
is much more amenable to validation
through testing and simulation.

In this paper a formal model is pro-
posed for V&V for knowledge-based
control systems. Formal means based
in. mathematical logic. Knowledge-
based control systems (KBCS) are con-
trol systems in which symbolic pro-
cessing methods aretightly coupled to
standard control algorithms. The ap-
proach taken is to formulate a struc-
tural model for the KBCS. This model
can be viewed as a representation of
the nondeterministic automaton men-
tioned above. A logic is then devel-
oped for asserting and reasoning about
properties of such structures. Speci-
fications are interpreted as assertions
about properties of the model. The
role of the validation software is to
prove these assertions.

2 V&VforKBCS

Within the domain of real time con-
trol the anticipated problems of V&V
for knowledge-based systems are com-
pounded by the real time aspects of the
domain. These difficulties are amelio-
rated somewhat by restricting the do-
main of application to systems built
in conformity with a prescribed model
for KBCSs. This model applies to
a class of control systems for which
it appears that the use of knowledge-
based methods can contribute to sys-
tem performance and fault tolerance.
It seems that such domain models may
be necessary to reduce the computa-
tional complexity of the formal V&V
methods to tractable proportions.

2.1 V&V Issues and AI

There are a number of aspects of arti-
ficial intelligence programs which ap-
pear to complicate the task of V&V.

1. There is often a strong nondeter-
ministic flavor to A.I. programs.

2. Time of execution for inference al-
gorithms can be extremely data
dependent.

198

3. Interrupt handling is difficult and
unreliable. There are no stan-
dard interfaces to other compo-
nents of the system and no well
defined methods for resuming an
interrupted inference process.

4. Languages typically used for A.I.
are usually weakly typed. .

These are not unique characteristics
of symbolic processing programs. It
is the conjunction of these properties
within A.I. programs, together with
the conceptual complexity of the pro-
grams, which creates difficulties when
attempting to base V&V procedures
upon formal logic.

2.2 Issues Raised by Real
Time Applications

The phrase real time, when applied
to computer programs, is generally
used to invoke images of dire conse-
quences of failure and dismally restric-
tive time constraints on program ex-
ecution. This view is not altogether
untrue, but is is perhaps too imprecise.
In the context of developing knowledge
based control systems four aspects of
real time performance seem to domi-
nate design and implementation deci-
sions.

1. Time constraints on system per-
formance. and thus implicitly on
software ezecution. The software
must be viewed in the context of
the entire system. Constraints on
software performance result from
percolating system requirements
through an architecture. Inad-
equate software performance can
be indicative of an inappropriate
architecture. as well as an inade-
quate implementation of the soft-
ware itself.

2. Actions have consequences and
the penalty for not meeting re-
quirements can be severe. These
consequences may be economic,

such as ruining a batch of toilet
paper. or they may lead to injury
or loss of life.

3. The timing of events is deter-
mined by the system environment,
not by the programmer. As with
performance requirements. these
constraints can result from choices
concerning the hardware and com-
munication's architecture as well
as the original system require-
ments.

4. Demands on the system may oc-
cur in parallel rather than sequen-
tially. Contention for resources
will occur in patterns that the
programmer has not anticipated.

The real issue here is not some mythi-
cal intrinsic sluggishness of knowledge-
based systems. In fact performance, in
the sense of speed of execution, is often
adequate for embedded control appli-
cations. The issue is adding constructs
to the base language which enable the
system developer to incorporate tim-
ing and sequencing constraints, for ex-
ample, within the KBCS without sac-
rificing clarity and abstraction.

3 Knowledge-Based Con-
trol Systems

Verification and validation of the im-
plementation software is a standard re-
quirement for many control systems.
Consequently the successful incorpora-
tion of constructs from artificial intelli-
gence within the framework of control
theory requires that there be a method
for V&V of knowledge-based control
systems. If methods based in formal
logic are to be used as the foundation
for V&V in this domain, it is neces-
sary to be able to describe, in a precise
way. what constitutes a well-formed
knowledge-based control system.

Traditional control theory deals with
systems which can be described in
termsofastatevector, (z l (t) , ..., zn(t))
where the z,(t) are usually reasonable

199

real-valued functions. The time evo-
lution of the state is governed by dif-
ferential. difference, or integral equa-
tions. Within this framework meth-
ods have been developed which enable
designers to address questions of sta-
bility. coverage, reliability, and per-
formance among other things. Con-
trol systems for a wide range of de-
vices, from toasters to airplanes, have
been built using these theories. There
are problems, however, which fall nat-
urally into the category of control
but for which these methods appear
to be inadequate 151. Systems in
which the state space description in-
volves discrete, and perhaps nonnu-
meric. variables fall into this category.
We such systems hybrid. Hybrid sys-
tems arise when there is mode selec-
tion. when switches or limiters are
used. or when extensive fault manage-
ment techniques are required. In such
cases the “mode switching logic”. or
the ”fault management logic”, which
constitutes the discrete aspect of the
control system, is usually constructed
in a fairly ad hoc manner.

The theory of knowledge-based control
systems is meant to be an extension
of traditional control theory which will
enable integration of symbolic process-
ing methods with standard approaches
to control. while retaining the abil-
ity to rigorously address questions of
stability, performance. and reliability.
The model which has been developed
is based largely upon work by Wonham
and Ramadge IS] and will be described
in detail in a forthcoming paper. The
value of such a formal domain model,
from the perspective of V d V is that
it enables a formal specification lan-
guage to be built. The language is com-
plete in the sense that it completely
describes this family of control sys-
tems, and s:atements in the specifica-
tion language can be readily translated
to assertions in a modal logic about the
structure of the implemented KBCS.

If the modes of a control system
are thought of as discrete entities
defining the domain of applicability
of some control law for a system,

then the core of the KBCS is the
mode switching logic which is gener-
ated by the mode switching supervi-
sor. The mode switching logic (MSL)
is a state-transition graph decsribing
which mode transitions are enables.
The MSL is generated by the mode
switching supervisor (MSS), in accor-
dance with the constraints of the con-
trol system design. The primary sym-
bolic processing capability of the sys-
tem of a KBCS is resident within the
MSS. A control system may have sev-
eral MSS. for example at each level of
a hierarchy

Thus a typical requirement for a con-
trol system is that the MSS always
generates a finite state machine MSL.
This is a statement in the specifica-
tion language which becomes an asser-
tion to be proved about the implemen-
tation of the KBCS. Another require-
ment might be that the MSL contain
no infinite loops. That is, a control
decision is always reached in every sit-
uation.

4 The Approach

4.1 Overview

The approach taken was to develop a
model based upon modal logic which
encompassed the control structure and
the semantic content of the KBCS.
Statements in the specification lan-
guage could then be interpreted as as-
sertions to be proved about the formal
model. The intent is that the speci-
fication be developed in parallel with
the KBCS and is refined while the sys-
tem is being built. The environment
in which the KBCS is built is based
upon an expert system shell. RTBA
(for Real Time Blackboard Architec-
ture), developed at Honeywell S k R C .
The developer never has to deal di-
rectly with the representation used for
VkV purposes.

200

4.2 Representation of the
KBCS

The KBCS is viewed as a family of
graphs. A given graph in the family,
corresponds to a “run” of the KBCS.
It is built by tying together a number
of graphs representing the knowledge
and inferences used, much as a truth
maintenance system builds a depen-
dency graph. The graphs are a form
of predicate transition net 121.

The “tying together” is done through
a control graph which models the deci-
sion points and the knowledge sources
of the system. In RTBA, in its current
form, control of invocation of knowl-
edge sources and oracles is represented
separately from the domain knowledge
sources. The approach to VElV pre-
sented here presumes that such a sep-
aration can be made, although it need
not be done as explicitly as in RTBA.

Starting from the control graph of the
KBCS form the path space of this
graph consisting of all paths based at
START. There is an infinite number
of these paths. Let C denote the con-
trol graph and P(C) the path space of
C, where it is understood that ”path”
means ”path based at START”. Each
path can be expanded into a form of
data flow graph representing the types
of information and rules which are ac-
tually active when the control proce-
dure follows the given path. These
data flow graphs, each of which is a
member of P(C). are predicate tran-
sition nets in the sense Genrich and
Lautenbach [23.

A form of modal logic was developed
for making statements about, and es-
tablishing properties of P(C), this very
large family of graphs. The semantic
content of the system is represented by
interpreting the family of graphs as a
Kripke model of the modal logic.

4.3 A Logic for Reasoning
about KBCS

We have adapted a form of modal
logic, called computational tree logic [I]

to support making statements about,
and proving properties of, this family
of graphs. The use of modal logics as
a basis for formal verification methods
has been proposed by Hoare, Pratt,
and a number of other researchers.
This work builds upon their efforts.

The operators in this logic are built
to form statements about properties
of graphs. Examples of modal oper-
ators are: A meaning for all paths; E
meaning for Some path; and X mean-
ing nezttime.

In the world of formal logic this fam-
ily of predicate transition nets can
be treated as a Kripke model of this
modal logic. A Kripke model, is a
triple (G, R, INF) where G is a set, R
is a relation on the set, and INF is a set
of inference rules. Intuitively G can be
viewed as a set of possible worlds. it R
tells which worlds are accessible from a
given world. INF tells how true state-
ments in a world are related to true
statcments in worlds accessible to that
world. In our case, an element of G is
a path in the control graph. R is sub-
set inclusion of paths. INF is the set of
inference rules for the logical operators
described above. This model-theoretic
interpretation provides a way to deal
explicitly with the semantic content of
the expert system. The realization of
the model in term of graphs means
that many of the computations of in-
terest become linear algebra calcula-
tions.

5 Other Issues

If validation and verification are con-
cerns when building a system, it k
prudent to consider them when build-
ing the environment within which the
system will be built. For knowledge-
based systems this means having well
defined methods for knowledge acqui-
sition, including tools for checking the
consistency and completeness of infor-
mation. There also needs to be a
formal language for expressing spec-
ifications, which supports refinement
and explanation, much in the spirit of

20 1

Swartout’s work. Without this type
of support formal methods have little
chance of success in practical terms.

It is well to keep in mind that there
are often different levels of software
criticality in a system. For example,
subsystems of a flight control systems
might be classified as; life critical, sys-
tem critical, or mission critical. The
level of V&V appropriate for a sub-
system is governed in large part by
the criticality level of that subsystem.
A weakness of the approach to VkV
outlined in this paper is that is does
not incorporate a mechanism for tai-
loring the degree of rigor of V&V pro-
cedures to the level of criticality of a
the knowledge-based system.

Intertwined with method for V&V are
questions about software safety and re-
liability. The goal of V&V has been to
insure that software is reliable in that
the implementation meets the speci-
fications and is reasonably free of er-
rors. However techiques for achieving
reliability and safety in software are
sometimes at odds with the require-
ments for testing. It can be difficult
to test software which has been writ-
ten to mask faults. It is possible that
formal methods for V&V offer a solu-
tion to this impasse.

It is possible that V&V may actu-
ally become easier for knowledge-based
systems than for traditional software.
As more capability is moved into com-
pilers through the use of program
transformation methods, the specifica-
tions move closer to becoming the pro-
gram. Much of the work of validation
may then become a one-time effort of
insuring the quality of the compiler.

References
1. Emerson, E.A., and A.P. Sistala,
“Deciding Full Branching Time Logic”,
Information and Control, vol. 61,
1984, (175-201).

2. Genrich, H.J., and K. Lauten-
bach, “System Modelling with High-
Level Petri Nets”, Theoretical Com-
puter Science, vol. 13, 1981, (109-
136).

3. Rang, E.R. and N.C. Wood,
The Use of Logic Languages for
the Formal Specification of Flight
Control Systems, Honeywell SRC,
contract P.O. No. RC 52571 prepared
for Lockheed-Georgia Company, April
1986.

4. Cook, Thomas M., “KBS Valida-
tion and Verification: Issues for the
NASA’s Space Station Program”, talk
given at a conference on validation and
verification of KBSs at NASAIAMES,
May 14-15, 1987.

5. Levis at al., “Challenges to Con-
trol”, IEEE Trans. on Automatic
Control, vol. AC-32, no. 4, April
1987.

6. Ramadge, P.J., and W.M. Won-
ham, “Supervisory Control of a Class
of Discrete Event Processes”, SIAM
Journal on Control and Opti-
mization, Jan. 1987. (206-230).

202

